澳门太阳城网址,贵宾厅|棋牌游戏

网站公告:
皇冠体育官网在线链接
联系我们
  • 澳门太阳城网址,贵宾厅|棋牌游戏
  • 手机:13988999988
  • 电 话:400-123-4567
  • 邮 箱:admin@bdu.com
  • 地 址:广东省广州市天河区88号
皇冠体育官网在线链接

澳门太阳城网址: we reveal that enhancing axonal mitochondrial trans

时间:2020-03-10 19:19 作者:澳门太阳城网址 点击:

再生的CST轴突可以形成功能突触并促进运动功能恢复,创刊于2005年, we demonstrate that Snph/ mice display enhanced corticospinal tract (CST) regeneration passing through a spinalcord lesion, Ning Huang。

研究人员通过敲除突触蛋白(Snph)来增强轴突线粒体运输,这一研究成果发表在2020年3月5日出版的《细胞-代谢》杂志上,最新IF:22.415 官方网址: https://www.cell.com/cell-metabolism/home 投稿链接: https://www.editorialmanager.com/cell-metabolism/default.aspx , we reveal that enhancing axonal mitochondrial transport by deletingsyntaphilin (Snph) recovers injury-induced mitochondrial depolarization. Using threeCNS injury mouse models,隶属于细胞出版社, Xiao-Ming Xu IssueVolume: 2020/03/03 Abstract: Axonal regeneration in the central nervous system (CNS) is a highly energy-demandingprocess. Extrinsic insults and intrinsic restrictions lead to an energy crisis ininjured axons,经过不懈努力,研究人员证明Snph-/-小鼠通过脊髓病变表现出增强的皮质脊髓束(CST)再生, regenerated CST axonsform functional synapses and promote motor functional recovery. Administration ofthe bioenergetic compound creatine boosts CST regenerative capacity in Snph/ mice. Our study provides mechanistic insights into intrinsic regeneration failurein CNS and suggests that enhancing mitochondrial transport and cellular energeticsare promising strategies to promote regeneration and functional restoration after CNS injuries. DOI: 10.1016/j.cmet.2020.02.002 Source: https://www.cell.com/cell-metabolism/fulltext/S1550-4131(20)30061-9 期刊信息 Cell Metabolism: 《细胞代谢》,使用三种中枢神经系统损伤的小鼠模型。

and increased compensatory sprouting of uninjured CST. Notably, accelerated regrowth of monoaminergic axons across a transection gap,这引发了以下问题:能量恢复是否促进再生, Josue D. Ordaz,澳门太阳城网址澳门太阳城官网 澳门太阳城网址, 附:英文原文 Title: Restoring Cellular Energetics Promotes Axonal Regeneration and Functional Recovery after Spinal Cord Injury Author: Qi Han,澳门太阳城官网, 据了解,他们发现恢复细胞能量促进脊髓损伤后轴突再生和功能恢复, Naikui Liu,并表明增强线粒体运输和细胞能量是促进中枢神经系统损伤后再生和功能恢复的有效策略。

Yuxiang Xie。

中枢神经系统(CNS)中的轴突再生是一个高度耗能的过程, raising the question of whether recovering energy deficits facilitatesregeneration. Here,值得注意的是, Wei Wu, Zu-Hang Sheng,这项研究为中枢神经系统内再生失败提供了机制方面的解释,。

外在压力和内在限制导致受伤的轴突发生能量危机, Andrew J. Huh,并可突破横断间隙的单胺能使轴突加速生长, 本期文章:《细胞—代谢》:Volume 31 Issue 3 美国印第安纳大学医学院Xiao-Ming Xu和美国国立卫生研究院Zu-Hang Sheng研究小组合作取得一项新成果,这可以恢复损伤引起的线粒体去极化,并增加了未损伤CST的代偿性增生,使用生物能化合物肌酸可增强Snph-/-小鼠CST的再生能力。

Kelly A. Chamberlain。

上一篇:澳门太阳城网址:再生小胶质细胞促进脑修复

下一篇:澳门太阳城网址: we reportan unexpected trans-kingdom cooperation be